The crystal structure and properties of $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$

Józef Utko, Małgorzata Wróblewska, Tadeusz Lis and Piotr Sobota
Institute of Chemistry, University of Wrocław, 14, Joliot Curie, 50-383 Wroctaw (Poland)

(Received July 29, 1992)

Abstract

The direct reaction of AlCl_{3} with trimethyl 1,3,5-benzenetricarboxylate in dichloromethane gives the colourless crystalline complex formulated as $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right.$]. The crystal structure of this compound has been determined by X-ray single crystal diffraction methods. Each aluminium atom is tetrahedrally coordinated by three chlorine atoms and one carbonyl oxygen atom of the $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3}$ molecule, so each ester molecule is bonded to three AlCl_{3} moieties.

1. Introduction

The presence of esters is essential to improve the stereospecificity of high activity catalyst systems based on AlR_{3} and titanium halides supported on activated MgCl_{2} [1] and intended for olefin polymerization. Investigations of the interaction between an ester and each component of the catalytic system are therefore important.

We have studied the reaction of AlCl_{3} with trimethyl 1,3,5-benzenetricarboxylate and here we describe the crystal structure of the title compound.

2. Experimental section

The reactions were carried out under nitrogen, using a standard Schlenk system and a vacuum line. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried before use. $1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3}$ was purchased from Aldrich. IR spectra were obtained on a Perkin-Elmer 180 spectrometer.
2.1. Synthesis of (trimethyl 1,3,5-benzenetricarboxylate$O, O^{\prime}, O^{\prime \prime}$)nonachlorotrialuminium (III)
$\mathrm{AlCl}_{3}(1.11 \mathrm{~g}, 8.2 \mathrm{mmol})$ was added to $1,3,5-$ $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3}(0.7 \mathrm{~g}, 2.7 \mathrm{mmol})$ dissolved in $60 \mathrm{~cm}^{3}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Stirring and heating under reflux continued until AlCl_{3} dissolved completely. The brown solution was filtered off and its volume reduced in vacuo to 30

[^0]cm^{3}. After 24 h at room temperature colourless crystals appeared, which were filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 5 \mathrm{~cm}^{3}\right.$). Yield $1.5 \mathrm{~g}, 82.9 \%$. (Found: Cl , 50.3; Al, 12.0. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Al}_{3} \mathrm{Cl}_{9} \mathrm{O}_{6}$ calc.: Cl, 48.9; Al, 12.4%). IR (Nujol): $\nu(\mathrm{C}=\mathrm{O}) 1630 \mathrm{vs}, 1650 \mathrm{vs}$; other bands: $230 \mathrm{~m}, 280 \mathrm{w}, 430 \mathrm{vs}, 530 \mathrm{vs}, 605 \mathrm{~s}, 730 \mathrm{vs}, 850 \mathrm{~m}, 910 \mathrm{~s}$, $990 \mathrm{vs}, 1150 \mathrm{~m}, 1360 \mathrm{~s}, 1375 \mathrm{~s}, 1390 \mathrm{~s} \mathrm{~cm}^{-1}$.

2.2. Crystal data

Colourless crystals, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Al}_{3} \mathrm{Cl}_{9} \mathrm{O}_{6}, \quad M=652.2$, monoclinic, space group $P 2_{1} / c, a=13.637(15), b=$ 15.143(17), $c=13.304(9) \AA, \beta=100.91(8)^{\circ}, U=2698(5)$ $\AA^{3}, Z=4, D_{\mathrm{c}}=1.606(3) \mathrm{g} \mathrm{cm}^{-3}, D_{\mathrm{m}}$ (by flotation)= $1.61 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1296 \mu($ Mo K $\alpha)=10.6 \mathrm{~cm}^{-1}$, $\lambda(\mathrm{MoK} \alpha)=0.71069 \AA$.

2.3. Data collection and processing

A sample of dimensions $0.8 \times 0.9 \times 0.9 \mathrm{~mm}$ was cut from a large crystal and sealed in a glass capillary. Preliminary data were recorded by photographic methods. Intensities were collected with a KM-4 diffractometer and Mo $K \alpha$ radiation. $7222\left(4<2 \theta<56^{\circ}\right)$ reflections were measured, of which 3042 with $I>3.0$ $\sigma(I)$ were used for calculations. The structure was solved by direct methods and refined by full-matrix least-squares calculations using shelx76 [2]. Neutral atomic scattering factors and anomalous dispersion terms used in the refinement were taken from ref. 3. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)$. All hydrogen atoms were found from difference maps and refined isotropically. Absorption

TABLE 1. Final atom parameters for $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$

Atom	\boldsymbol{x}	y	z	$U_{\text {eq }} / U_{\text {iso }}$
$\mathrm{Cl}(1)$	0.09799 (9)	0.17332(8)	0.45168(9)	$0.0667(5)$
$\mathrm{Cl}(2)$	$0.19413(11)$	0.30333(11)	0.27690(9)	$0.0973(8)$
$\mathrm{Cl}(3)$	0.01301(10)	$0.39178(9)$	0.40413(10)	$0.0865(7)$
$\mathrm{Cl}(4)$	-0.23501(11)	0.27234(10)	$0.75277(11)$	$0.0962(7)$
$\mathrm{Cl}(5)$	$-0.09070(11)$	0.22973(9)	0.57479(13)	0.1054(8)
$\mathrm{Cl}(6)$	$-0.24838(11)$	0.41433(11)	$0.54776(13)$	0.1181(9)
$\mathrm{Cl}(7)$	$0.53517(11)$	0.73324(10)	$0.76299(12)$	$0.1024(8)$
$\mathrm{Cl}(8)$	0.63165(10)	0.61878(10)	$0.99030(11)$	0.1011(7)
Cl(9)	$0.57742(10)$	$0.50389(10)$	$0.76029(12)$	0.0929(7)
$\mathrm{Al}(1)$	0.13049(11)	0.30191(9)	$0.40872(10)$	$0.0526(6)$
$\mathrm{Al}(2)$	-0.15765(9)	0.32807(9)	0.64674(10)	0.0480(5)
Al(3)	0.54287(10)	0.61398(10)	0.84332(11)	$0.0579(6)$
$\mathrm{O}(11)$	0.22344 (22)	$0.33959(19)$	0.51325(21)	0.0621(13)
O(12)	$0.36681(22)$	$0.40669(20)$	$0.57442(21)$	$0.0562(13)$
O(31)	$-0.05680(20)$	$0.39445(20)$	$0.71119(22)$	$0.0602(13)$
O(32)	-0.02799(19)	$0.49513(19)$	$0.83439(22)$	0.0521(12)
$\mathrm{O}(51)$	0.42022(20)	$0.59765(20)$	$0.86624(21)$	$0.0589(13)$
$\bigcirc(52)$	0.30051(19)	$0.61255(18)$	0.95564(20)	0.0481(11)
C(1)	$0.23644(29)$	$0.43025(25)$	0.66199(28)	0.0386(15)
C(2)	0.13917(31)	$0.41756(27)$	$0.67478(31)$	$0.0426(16)$
C(3)	0.10432(28)	$0.46066(25)$	$0.75223(28)$	0.0366(15)
C(4)	0.16728(31)	0.51456 (28)	0.81865(32)	0.0382(16)
C(5)	$0.26479(28)$	$0.52566(24)$	0.80857(28)	$0.0364(14)$
C(6)	$0.29889(30)$	$0.48437(27)$	0.72966 (31)	0.0403(16)
C(11)	0.27523(33)	$0.38822(27)$	0.57648(31)	$0.0467(17)$
C(12)	$0.41150(58)$	$0.37328(53)$	0.48996 (53)	$0.0787(31)$
C(31)	-0.00114(32)	$0.44705(28)$	0.76433(32)	0.0461(17)
C(32)	$-0.12960(42)$	$0.48472(46)$	0.85567(56)	$0.0778(28)$
C(51)	0.33423(30)	$0.58138(26)$	0.87883(29)	$0.0417(16)$
C(52)	0.36411(45)	0.67013(46)	1.03033(46)	$0.0684(24)$
H(11)	$0.385(4)$	0.395(4)	0.427(4)	0.089(21)
H(12)	0.408(4)	0.314(4)	0.494(4)	0.097(23)
H(13)	0.486(5)	0.381(4)	0.510(5)	0.140(27)
H(31)	-0.128(4)	0.535(4)	$0.900(4)$	0.103(21)
H(32)	-0.128(4)	0.423(3)	0.882(4)	0.088(20)
H(33)	$-0.186(5)$	0.488(4)	$0.778(5)$	0.171(29)
H(51)	0.382(4)	0.725(4)	0.992(4)	$0.120(25)$
H(52)	0.326 (4)	0.697(4)	1.075(4)	0.103(21)
H(53)	0.426 (4)	0.643(3)	$1.059(4)$	0.087(19)
H(2)	0.101(3)	$0.381(2)$	0.635(3)	0.022(10)
H(4)	0.147(3)	0.541(3)	0.860(3)	$0.020(11)$
H(6)	0.364(3)	0.488(3)	$0.725(3)$	$0.056(14)$

corrections following the difabs procedure [4] were applied, minimum and maximum absorption corrections were 0.825 and 1.078. The final R and R_{w} values were 0.0404 and 0.0291 for the observed reflections. For the last cycle of the refinement the maximal value of the Δ / σ ratio was 0.05 and the final difference map showed a general background within -0.31 and 0.36 e \AA^{-3}.

The final atomic parameters are summarized in Table 1.

3. Results and discussion

The addition of trimethyl $1,3,5$-benzenetricarboxylate to AlCl_{3} in dichloromethane, in 1:3 molar ratio, leads to air-sensitive colourless crystals of composition $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$, which can be stored under nitrogen. The IR spectrum shows a stretching $\nu(\mathrm{C}=0)$ mode at 1630 and 1650 vs and a phenyl ring at $1600 \mathrm{~s} \mathrm{~cm}^{-1}$.

$$
\begin{align*}
& 3 \mathrm{AlCl}_{3}+1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \xrightarrow{\mathrm{CH}_{2} \mathrm{Cl}_{2}} \\
& {\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]} \tag{1}
\end{align*}
$$

The structure of $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$ is shown in Fig. 1. Selected bond lengths and bond angles are listed in Table 2. There are three crystallographically different Al atoms in the complex molecule. Three chlorine atoms and one carbonyl oxygen atom from trimethyl 1,3,5-benzenetricarboxylate form a distorted tetrahedron around each aluminium atom. The atoms $\mathrm{Al}(1), \mathrm{Al}(2), \mathrm{Al}(3)$ are placed 1.789(3), 1.786(3), 1.773(3) \AA from the $O(11), O(31)$ and $O(51)$ carbonyl oxygens, respectively. The $\mathrm{Al}-\mathrm{Cl}$ bond lengths range from $2.073(2)$ to $2.102(2) \AA$. The $\mathrm{Al}(3)-\mathrm{O}(51)-\mathrm{C}(51)$ angle of $176.0(3)^{\circ}$ is larger than the $\mathrm{Al}(1)-\mathrm{O}(11)-\mathrm{C}(11)$ and $\mathrm{Al}(2)-\mathrm{O}(31)-\mathrm{C}(31)$ angles of $161.8(3)$ and $167.8(3)^{\circ}$, respectively. It was found [5] that in the trichloro(ethyl benzoate)aluminium(III) molecule the $\mathrm{Al}-\mathrm{O}-\mathrm{C}$ bond angle is obtuse to $168.4(3)^{\circ}$. In the $\mathrm{Et}_{2} \mathrm{Al}$ (OAryl)-methyl

Fig. 1. View of the $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AICl}_{3}\right]$ molecule perpendicular to the benzene ring.

TABLE 2. Principal interatomic distances (\AA) and bond angles (${ }^{\circ}$) for $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$

$\mathrm{Al}(1)-\mathrm{Cl}(1)$	$2.100(2)$	$\mathrm{O}(11)-\mathrm{C}(11)$	$1.234(5)$
$\mathrm{Al}(1)-\mathrm{Cl}(2)$	$2.099(2)$	$\mathrm{O}(12)-\mathrm{C}(11)$	$1.285(5)$
$\mathrm{Al}(1)-\mathrm{Cl}(3)$	$2.094(2)$	$\mathrm{O}(12)-\mathrm{C}(12)$	$1.466(8)$
$\mathrm{Al}(1)-\mathrm{O}(11)$	$1.789(3)$	$\mathrm{C}(11)-\mathrm{C}(1)$	$1.486(6)$
$\mathrm{Al}(2)-\mathrm{Cl}(4)$	$2.092(2)$	$\mathrm{O}(31)-\mathrm{C}(31)$	$1.228(5)$
$\mathrm{Al}(2)-\mathrm{Cl}(5)$	$2.073(2)$	$\mathrm{O}(32)-\mathrm{C}(31)$	$1.289(5)$
$\mathrm{Al}(2)-\mathrm{Cl}(6)$	$2.087(2)$	$\mathrm{O}(32)-\mathrm{C}(32)$	$1.474(7)$
$\mathrm{Al}(2)-\mathrm{O}(31)$	$1.786(3)$	$\mathrm{C}(31)-\mathrm{C}(3)$	$1.491(6)$
$\mathrm{Al}(3)-\mathrm{Cl}(7)$	$2.091(2)$	$\mathrm{O}(51)-\mathrm{C}(51)$	$1.240(5)$
$\mathrm{Al}(3)-\mathrm{Cl}(8)$	$2.097(2)$	$\mathrm{O}(52)-\mathrm{C}(51)$	$1.287(5)$
$\mathrm{Al}(3)-\mathrm{Cl}(9)$	$2.102(2)$	$\mathrm{O}(52)-\mathrm{C}(52)$	$1.474(7)$
$\mathrm{Al}(3)-\mathrm{O}(51)$	$1.773(3)$	$\mathrm{C}(51)-\mathrm{C}(5)$	$1.465(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.382(6)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.376(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.378(6)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1.385(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.377(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.372(6)$
$\mathrm{Cl}(1)-\mathrm{Al}(1)-\mathrm{Cl}(2)$	$112.3(1)$	$\mathrm{Cl}(5)-\mathrm{Al}(2)-\mathrm{Cl}(6)$	$114.7(1)$
$\mathrm{Cl}(1)-\mathrm{Al}(1)-\mathrm{Cl}(3)$	$114.3(1)$	$\mathrm{Cl}(6)-\mathrm{Al}(2)-\mathrm{Cl}(4)$	$111.3(1)$
$\mathrm{Cl}(2)-\mathrm{Al}(1)-\mathrm{Cl}(3)$	$113.8(1)$	$\mathrm{Cl}(4)-\mathrm{Al}(2)-\mathrm{Cl}(5)$	$110.1(1)$
$\mathrm{Cl}(2)-\mathrm{Al}(1)-\mathrm{O}(11)$	$107.6(2)$	$\mathrm{Cl}(5)-\mathrm{Al}(2)-\mathrm{O}(31)$	$105.0(2)$
$\mathrm{Cl}(3)-\mathrm{Al}(1)-\mathrm{O}(11)$	$103.9(2)$	$\mathrm{Cl}(4)-\mathrm{Al}(2)-\mathrm{O}(31)$	$110.1(2)$
$\mathrm{Cl}(1)-\mathrm{Al}(1)-\mathrm{O}(11)$	$103.8(2)$	$\mathrm{Cl}(6)-\mathrm{Al}(2)-\mathrm{O}(31)$	$105.1(2)$
$\mathrm{Al}(1)-\mathrm{O}(11)-\mathrm{C}(11)$	$161.8(3)$	$\mathrm{Al}(2)-\mathrm{O}(31)-\mathrm{C}(31)$	$167.8(4)$
$\mathrm{Cl}(7)-\mathrm{Al}(3)-\mathrm{Cl}(8)$	$114.3(1)$	$\mathrm{C}(11)-\mathrm{O}(12)-\mathrm{C}(12)$	$119.2(5)$
$\mathrm{Cl}(7)-\mathrm{Al}(3)-\mathrm{Cl}(9)$	$114.3(1)$	$\mathrm{C}(31)-\mathrm{O}(32)-\mathrm{C}(32)$	$119.0(4)$
$\mathrm{Cl}(8)-\mathrm{Al}(3)-\mathrm{Cl}(9)$	$111.7(1)$	$\mathrm{C}(51)-\mathrm{O}(52)-\mathrm{C}(52)$	$119.9(4)$
$\mathrm{Cl}(7)-\mathrm{Al}(3)-\mathrm{O}(51)$	$104.5(2)$	$\mathrm{Cl}(9)-\mathrm{Al(3)-O(51)}$	$107.0(1)$
$\mathrm{Cl}(8)-\mathrm{Al}(3)-\mathrm{O}(51)$	$104.0(2)$	$\mathrm{Al}(3)-\mathrm{O}(51)-\mathrm{C}(51)$	$176.0(3)$

p-toluate complex [6] (Aryl $=2,6-{ }^{\mathrm{t}} \mathrm{Bu}_{2}-4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{2}$) the $\mathrm{Al}-\mathrm{O}-\mathrm{C}$ bond angle is $143.0(6)^{\circ}$. Therefore, in the investigated complex the $\mathrm{Al}(3)-\mathrm{O}(51)-\mathrm{C}(51)$ angle is much larger than similar angles in other known compounds, in which the aluminium atom is coordinated to carbonyl group. The $\mathrm{C}=\mathrm{O}$ bond lengths in the carbonyl groups $\mathrm{O}(11)-\mathrm{C}(11)[1.234(5) \AA], \mathrm{O}(31)-\mathrm{C}(31)[1.228(5)$ $\AA]$ and $\mathrm{O}(51)-\mathrm{C}(51)[1.240(5) \AA]$ are comparable to the $\mathrm{C}=\mathrm{O}$ bond length of $1.230(5) \AA$, found [5] in $\left[\mathrm{AlCl}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{Et}\right)\right]$. In the examined compound the phenyl ring is not strictly planar. The $\mathrm{C}(2)$ and $\mathrm{C}(5)$ atoms are located under the plane formed by the C(1), $C(6), C(4)$ and $C(3)$ atoms, so the angle between two planes formed by the $\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(1), \mathrm{C}(2)$ atoms and the $\mathrm{C}(5), \mathrm{C}(4), \mathrm{C}(3), \mathrm{C}(2)$ atoms is $178.2(8)^{\text {a }}$. The similar angles in $\left[\left\{\mu-1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}_{3}\right]_{2} \mathrm{Cl}_{8} \mathrm{Ti}_{2}\right]\right.$. $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}[7]$ and $\left[\left\{\mu-\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{Et}_{2}\right]_{2} \mathrm{Cl}_{8} \mathrm{Ti}_{2}\right][8]\right.$ are $178.2(8)^{\circ}$ and $177.6(8)^{\circ}$, respectively. On the contrary, in the polymeric $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}_{3} \cdot 3 \mathrm{TiCl}_{4}\right.\right.$] compound [7] and dimeric [$\mu-\mathrm{m}-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$] $\mathrm{Cl}_{8} \mathrm{Ti}_{2}$] $\cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ complex [9] the phenyl rings of the
ester molecules are strictly planar. In both these compounds there are large distances between the phenyl rings. Furthermore, there are rather short intermolecular contacts in the crystal of $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3}\right.$. $3 \mathrm{AlCl}_{3}$]. The $\mathrm{C}(3)$ atom is $3.354(4)$ and $3.259(4) \AA$ from the $\mathrm{Cl}\left(1^{x, 0.5-y, 0.5+z}\right)$ and $\mathrm{Cl}\left(3^{-x, 1-y, 1-z}\right)$ atoms, respectively. These distances are shorter than the sum of the van der Waals radii.

The available data indicate that AlCl_{3} in ethyl acetate and tetrahydrofuran forms ionic salts [10,11]. With aromatic esters the molecular compounds $\left[\mathrm{AlCl}_{3}\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{Et}\right)\right]$ and $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$ are obtained instead. This observation could be important in the explanation of the different behaviours in olefin polymerization processes displayed by the complexes formed in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Et}$, THF and aromatic esters.

Supplementary material available

Tables of observed and calculated structure factors for $\left[1,3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{3} \cdot 3 \mathrm{AlCl}_{3}\right]$ are available from the authors.

Acknowledgment

This work was supported financially by KBN, Grant 481/2/91.

References

1 V. Giannini, G. Giunchi and E. Albizzati, Recent Adv. Mech. Synth. Aspects Polym. (Eng.), (1987) 473; P. Sobota, Polyhedron, II (1992) 715.
2 G. M. Sheldrick, shelxif, Program for Structure Determination, University of Cambridge, 1976.
3 International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, 1974.
4 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 39 (1983) 158.

5 P. Sobota, M. O. Mustafa, J. Utko and T. Lis, J. Organomet. Chem., 368 (1989) 257.
6 A. P. Shreve, R. Mulhaupt, W. Fultz, J. Calabrese, W. Robbins and S. D. Ittel, Organometallics, 7 (1988) 409.
7 P. Sobota, J. Utko and T. Lis, J. Organomet. Chem., in press.
8 J. Utko, P. Sobota and T. Lis, J. Organomer. Chem., 373 (1989) 63.

9 P. Sobota, J. Utko and T. Lis, J. Organomet. Chem., 417 (1991) 389.

10 P. Sobota, M. O. Mustafa, J. Utko and T. Lis, J. Chem. Soc., Dalton Trans., (1990) 1809.
11 N. C. Means, C. M. Means. S. G. Bott and J. L. Atwood, Inorg. Chem., 26 (1987) 1466.

[^0]: Correspondence to: Prof. P. Sobota.

